Seismic evidence for partial melting at the root of major hot spot plumes
Ultralow-velocity zones are localized regions of extreme material properties detected seismologically at the base of Earth’s mantle. Their nature and role in mantle dynamics are poorly understood. We used shear waves diffracted at the core-mantle boundary to illuminate the root of the Iceland plume from different directions. Through waveform modeling, we detected a large ultralow-velocity zone and constrained its shape to be axisymmetric to a very good first order. We thus attribute it to partial melting of a locally thickened, denser- and hotter-than-average layer, reflecting dynamics and elevated temperatures within the plume root. Such structures are few and far apart, and they may be characteristic of the roots of some of the broad mantle plumes tomographically imaged within the large low-shear-velocity provinces in the lower mantle.
Abstract
Ultralow-velocity zones are localized regions of extreme material properties detected seismologically at the base of Earth’s mantle. Their nature and role in mantle dynamics are poorly understood. We used shear waves diffracted at the core-mantle boundary to illuminate the root of the Iceland plume from different directions. Through waveform modeling, we detected a large ultralow-velocity zone and constrained its shape to be axisymmetric to a very good first order. We thus attribute it to partial melting of a locally thickened, denser- and hotter-than-average layer, reflecting dynamics and elevated temperatures within the plume root. Such structures are few and far apart, and they may be characteristic of the roots of some of the broad mantle plumes tomographically imaged within the large low-shear-velocity provinces in the lower mantle.
Download
Download the paper here